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Abstract

Since the mid-1990s, the multiple myeloma (MM) treatment landscape has evolved considerably, 

which has led to improved patient outcomes and prolonged survival. In addition to discovering 

new, targeted agents or treatment regimens, the identification and validation of biomarkers has the 

potential to further improve patient outcomes. The International Staging System (ISS) relies on a 

number of biochemical parameters to stratify patients into risk categories. Other biologically 

relevant markers that are indicative of inherited genetic variation (e.g., single nucleotide 

polymorphisms) or tumor acquired genetic events (e.g., chromosomal translocations or mutations) 

have been studied for their prognostic potential. In patients with high-risk (HR) cytogenetics, 

plasma cells (PCs) undergo genetic shifts over time, which may partially explain why HR patients 

relapse and are so difficult to treat. Although novel agents have improved treatment outcomes, 

identification of markers that will enable clinicians to determine which treatment is most 

appropriate for HR patients following initial diagnosis represents an exciting frontier in the clinical 

management of MM. Biomarkers based on quantitating PCs or factors that are secreted from them 

(e.g., serum free light chain) may also help to risk-stratify patients with asymptomatic MM. 

Eventually, identification of novel biomarkers may lead to the creation of personalized treatment 

regimens that are optimized to target clonal PCs that express a specific oncogenomic profile. 

Although the future is exciting, validation will be necessary before these biologic and molecular 

beacons can inform decision-making processes in a routine clinical setting.
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Introduction

Multiple myeloma (MM) is a hematologic disease that is characterized by the proliferation 

of abnormal bone marrow plasma cells (BMPCs) and immunoglobulin (Ig) or light chain 

overproduction, with evidence of end-organ damage. Prior to 1997, the median survival of 

patients with newly diagnosed MM was approximately 2.5 years (1). From 1997 to 2006, the 

use of high-dose anti-MM therapy, stem cell transplantation, and novel agents increased 

median overall survival (OS) to nearly 4 years, a 50% improvement (1). In some patients 

who are currently receiving such agents, improved relapse-free survival has increased to > 

10 years (2), raising the potential for long term disease control and care.

Although the MM treatment landscape has improved since the mid-1990s, the intraclonal 

heterogeneity of malignant plasma cells (PCs), the interaction of PCs with host factors, and 

the bone marrow (BM) microenvironment contribute to disease progression and the 

molecular evolution of the disease according to “Darwinian” principles (3, 4). Taken 

together, these factors contribute to the generation of treatment-resistant PCs, which 

ultimately leads to relapsed and refractory myeloma (RRMM), the disease stage that is 

frequently used for drug development. However, as the nature of this disease stage continues 

to change as a consequence of patients receiving multiple lines of therapy, it is essential that 

we develop novel approaches to drug development.

If patients are to overcome treatment resistance, one approach that may improve clinical 

outcomes is to select treatments that are well matched to a patient's molecularly defined 

disease subtype (5). Another promising approach is to identify new biomarkers and tools 

that can identify onset or worsening of disease. According to the National Cancer Institute 

(NCI), a biomarker is a molecule that is found in blood and other body fluids or tissues that 

can serve as an indicator for a normal or abnormal process, condition, or disease (6). Herein, 

we will review biomarkers that have been used in MM that meet the NCI's definition of a 

biomarker (e.g., monoclonal [M] protein); we will also discuss molecular markers and tools 

that have the potential to dramatically alter how clinicians diagnose, stage, and treat patients 

with MM or asymptomatic “early” MM.

The emergence of clinical biomarkers in multiple myeloma

In the 1960s, MM researchers began to identify biomarkers that were independent predictors 

of survival, including hemoglobin, serum calcium, serum creatinine, and bone lesion 

severity (7, 8). In 1975, Durie and Salmon introduced a staging system that used monoclonal 

(M) protein, hemoglobin, calcium, and the number of bone lesions to predict MM cell tumor 

burden (9). In the 1980s, serum β2-microglobulin (β2M) was found to be a simple, yet 

reliable prognostic marker for disease staging; serum β2M also enabled clinicians to predict 

a patient's likelihood of survival (10, 11). Subsequently, albumin (12), C-reactive protein 

(13), and BMPC proliferation indices (14, 15) were found to be reliable prognostic factors, 

but didn't come into general use. In 2005, an international consortium of researchers used 

serum β2M and serum albumin to create the International Staging System (ISS), which 

enabled clinicians to stage patients and predict their long-term prognosis (16). This has been 

further refined by combining FISH data with ISS staging (17, 18).
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Other types of biomarkers (e.g., serum free light chain [sFLC] ratio and cytogenetic 

markers) are also beginning to provide prognostic information in MM and patients with 

asymptomatic disease (18-20). There have been significant developments in the diagnostic 

platforms that are available to assess the molecular features of MM that provide extensive 

novel information as well as new diagnostic tests. The current emphasis is on using multi-

parallel genome wide approaches, which yield huge amounts of data and offer the advantage 

of being able to multiplex genomes from many patients in a single run, which can reduce the 

cost per test. However, these technologies also raise significant issues with regard to the 

generation of complex datasets and how they can be reliably analyzed. These technologies 

will need to be robust and applicable if they are to be widely used in a routine setting. It is 

also appropriate to ask whether we should take a genome wide approach to biomarker 

development or whether we should focus on a smaller number of “MM relevant” markers 

that can be analyzed using simpler and potentially more robust techniques.

Cytogenetic biomarkers in multiple myeloma

Changes at the DNA level determine how a cancer cell behaves. If we can understand these 

molecular events, we should be able to predict the behavior of cancer. Chromosomal 

translocations are primary genetic events that occur early in the disease and are seen in 

roughly 50% of MM patients. As a consequence of the translocation events, there is 

overexpression of partner genes, leading to abnormal clonal PC behavior and differing 

clinical outcomes (17, 21-27). For example, respective four-year progression-free survival 

(PFS) and OS rates for patients with the t(4;14) have been estimated to be 11% and 35% 

versus PFS and OS rates of 32% and 60% for patients without the t(4;14) (18).

Other chromosomal translocations have been investigated for their prognostic potential. The 

t(14;16) is present in < 5% of patients with newly diagnosed MM and defines a group of 

patients who often have poor survival (17, 18, 28, 29). Although the t(14;16) is relatively 

rare, the MAF gene is overexpressed in up to 30% of MM patients, defining a greater 

number of patients with a unifying biological feature (4). The t(11;14) is observed in 

approximately 20% of patients and is associated with a favorable prognosis, higher rates of 

CD20 expression, lymphoplasmacytic morphology, hyposecretory disease, λ-light chain 

usage, and nuclear cyclin D1 (CCND1) expression and dysregulation (18, 21, 23, 30-32).

Hyperdiploidy of the odd-numbered chromosomes is the other major primary genetic event 

in MM that defines the other 50% of MM cases (Table 1) (4, 33-36). Although the exact 

cause of hyperdiploidy is unknown, it seems to define a group of patients with a more 

favorable prognosis (37). In addition to chromosomal translocations and hyperdiploidy, 

inherited genetic variation is an important factor in the etiology of MM. Molecular 

epidemiology techniques have shown that MM is associated with SNPs at the chromosomal 

regions 2p, 3p, 6p, 7p, 17p and 11q (4, 34, 35). However, at this point no prognostic value 

has been seen in association with these variables. Inherited variation can also affect response 

to chemotherapy and the side effect profile of a drug. To date, very few studies have been 

carried out to test this hypothesis, and they have not as yet defined relevant markers that can 

be used in this way in MM (38).
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Secondary genetic events, which are important in disease progression, also affect various 

molecular pathways and contribute to the biological heterogeneity of PCs (Table 2). In this 

context, prognostically important copy number abnormalities (including gains or deletions 

of whole chromosomes or interstitial copy number gains) have been identified using SNP 

mapping arrays (4, 18, 33, 39). Clinically relevant regions that have been identified using 

this approach include 1q+, 1p32-, 1p11- and 17p-. The International Myeloma Working 

Group (IMWG) has recommended assessing these specific cytogenetic lesions at disease 

presentation, as they may have prognostic value that is clinically relevant. The study of copy 

number change has also improved our understanding of the biology of MM, leading to the 

identification of 16q, a WW domain-containing oxidoreductase gene (WWOX), CYLD (a 

negative regulator of the NF-κΒ pathway), 11q- (BIRC2 and BIRC3), and 14q (TRAF3) as 

being relevant recurrent events (40, 41). These findings reinforce the importance of using 

therapeutic approaches to target the NF-κΒ pathway.

The use of massively parallel sequencing has identified hundreds of mutations in MM (42, 

43); however, no consistently mutated gene has been identified that characterizes all 

occurrences of the disease. Nevertheless, these studies are in their infancy; the prognostic 

relevance of the multitude of exonic mutations that have been identified has yet to be 

determined. While potentially useful, one challenge with interpreting sequencing data is 

defining which mutations are so called “driver variants” that are important to disease 

pathogenesis rather than being “passenger variants” which are present by virtue of being 

carried forward by their association with other pathogenetically important genes. Driver 

mutations identified by this approach may be important therapeutic targets that could be 

used to design targeted treatment approaches.

Biomarker development

If we are to use tumor acquired genetic variants as biomarkers, it is important to consider 

their specificity and sensitivity for identifying the clinical outcome of interest (e.g., PFS, OS, 

or side effects). There is now considerable data on the use of “FISH detected” cytogenetic 

markers to predict clinical outcomes. What is clear from these data is that no single marker 

offers either good sensitivity or specificity for the prediction of either PFS or OS. If we are 

to alter treatment following use of a FISH-based cytogenetic approach, we will need to use a 

comprehensive panel of markers to define risk based on both the number and nature of the 

adverse markers detected. iFISH combined with the ISS is useful, but general applicability 

and issues with sensitivity and specificity remain. Some of these challenges can be overcome 

by counting the number of abnormal lesions that are present and using the number present as 

a way of defining risk. This approach combined with the use of a comprehensive panel of 

markers, including the adverse translocations t(4;14) and MAF together with the adverse 

copy number variables 1q+, 1p- and 17p- can provide very complete clinical data.

Global gene expression profiling (GEP) and prognostic signatures provide an alternative 

approach to FISH (44). Although GEP and prognostic signatures offer greater specificity in 

patients who are identified as having a poor prognosis, they lack biological relevance and 

remain difficult to apply in a routine clinical setting. However, GEP does provide a massive 

amount of data and can define the groups identified in the TC classification as well as being 
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able to detect prognostic signatures. At this time, GEP cannot usefully identify the adverse 

groups defined by 1q+ and 17p-; these 2 subgroups with a poor prognosis still need to be 

detected by iFISH. The eventual clinical application and regular use of such biomarkers 

depends upon their clinical applicability together with the availability of effective treatments 

for use in specific patient subgroups.

The technology used to detect a cytogenetic biomarker is also of critical importance. 

Historically, metaphase cytogenetic analysis was used, but this only gave results in 18% of 

patients and was therefore not widely adopted. Although FISH on CD138-selected PCs is 

applicable and gives results in nearly 100% of patients if adequate numbers of tumor cells 

are obtained, this method is slow and expensive and up to now has lacked sensitivity and 

specificity. For predicting clinical outcomes, new genome wide technologies are useful, yet 

their design and application are still in their infancy. Alternative strategies that may be more 

applicable for detecting copy number changes include multiplex ligation-dependent probe 

amplification (MLPA), which can detect the clinically relevant MM-associated copy number 

variants at a fraction of the cost of FISH. MLPA can also deliver results in a more timely 

fashion while GEP can define risk status based on poor prognosis signatures. An alternative 

expression-based approach is to design real-time quantitative polymerase chain reaction 

(RQ-PCR) assays that can identify TC classification groups and prognostically relevant 

genes (45). If these assays are combined with MLPA copy number variant assays, this 

approach can provide all of the relevant prognostic variants in a set of tests that are readily 

applicable.

MicroRNAs (miRNAs), which are more stable than conventional RNA, can be detected in 

serum as well as in malignant PCs (46). In this context, most work on MM biomarkers has 

focused on BMPCs; little work has been done on circulating PCs or serum DNA or RNA. 

These areas offer considerable opportunities for future development (3, 47). Additionally, 

important epigenetic events—including global DNA hypomethylation and gene-specific 

DNA hypermethylation—are beginning to provide insights into the etiology of disease 

progression and could lead to the identification of clinically useful biomarkers (4, 48, 49).

The development of clinically relevant biomarkers is now being shaped by the regulatory 

framework for such testing. The Clinical Laboratory Improvement Amendments (CLIA) 

approach suggests that the development of biomarkers needs to be done in defined 

laboratories that work according to relevant standard operating procedures. This implies that 

biomarkers all need to be developed in the context of clinical trials where data are collected 

according to the principles of good clinical practice (GCP) and the biomarkers are 

determined in a laboratory working to CLIA standards. In the absence of such an approach, 

biomarkers cannot be adopted into clinical practice.

Risk-stratified treatment of MM

The identification of patient-specific cytogenetic abnormalities and patients' gene mutation 

status may be particularly useful in helping to direct treatment in patients with MM who 

possess a specific oncogenomic profile (5). It is now possible to define LR and HR disease 
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subsets using GEP and FISH (50). GEP is useful in defining the molecular subtypes of MM 

as well as being able to define signatures of HR disease (50-53).

Based on data analyses from platforms that are derived from completed studies, we are 

making progress toward improving the outcomes of patients with standard-risk (SR) disease. 

Nevertheless, we have made little progress toward treating or managing patients with HR 

disease. These observations argue in favor of moving toward the design of clinical trials that 

specifically develop treatments for HR disease. However, before we can design such studies, 

the biomarkers for robustly identifying these risk groups need to be validated in order for us 

to screen an adequate number of patients in the molecular subgroup of interest. This clinical 

trial approach will require us to fully embrace modern genomic technologies that are 

applicable in routine diagnostic facilities.

“Clinical response” as a biomarker

Changes in BMPCs, paraprotein, and light chains form the basis of assessing patient 

response to therapy and could be used as an alternative treatment end point. The standard 

approach to using these data is with the criteria laid out in the IMWG response criteria (54). 

The achievement of complete response (CR) is an important end point when assessing new 

therapies (Table 3); it seems likely that the deeper the level of response, the better the 

clinical outcome will be. Indeed, the achievement of a CR with no detectable disease is the 

essential prerequisite for a cure. Thus, the definition of stringent CR and the criteria defining 

this state are of some importance. The IMWG defines stringent complete response (sCR) 

similarly to CR, but MM patients must also have a normal FLC ratio with no evidence of 

clonal BMPCs (assessed using immunohistochemistry or 2- to 4- color flow cytometry) (54). 

There is a consensus that is beginning to emerge on the most appropriate panel of antibodies 

and the strategy for detecting malignant PCs, with considerable enthusiasm being directed 

toward their use as a definitive clinical endpoint. Flow cytometry has considerable merit for 

monitoring residual disease because it offers sensitivity and does not require one to design 

patient/clono-specific approaches; it can also be performed in most hemato-oncology 

diagnostic laboratories.

A recent survey that included 30 major medical institutions in the US found that the 

application of multicolor flow cytometry for minimal residual disease (MRD) in MM varies 

greatly (55). Indeed, the definition of abnormal PCs differed substantially between 

institutions, with some relying on CD19 and CD45 negativity with or without CD56 

positivity to determine the extent of MRD despite previous studies showing that normal PC 

subpopulations can be negative for CD19 and CD45 or CD56 positive (56, 57). More 

specific antigens such as CD27, CD81 and CD117 were used by less than half of the 

institutions. Even more importantly, there is considerable variation in the number of BMPCs 

analyzed (i.e., events) and the number of abnormal PCs that are needed to determine the 

presence of MRD, which affects the maximum possible sensitivity of the assay. In this 

survey, it was found that the maximum detection sensitivity ranged from 0.0005% to 0.02%, 

a 100-fold difference in sensitivity. Such data copies the establishment of standardized 

approaches and external quality control programs. It is important to contrast this with 

multiparameter flow cytometry with the application of clono-specific PCR for the same 
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purpose. In most settings, the clono-specific PCR offers greater sensitivity, but this 

technique has been hampered by the necessity to develop clono-specific probes, which has 

made its general application cumbersome and expensive. This situation is now changing 

with the advent of massively parallel sequencing approaches, which utilize probes that can 

be used to tile entire IgH regions (43). This approach is sensitive, high throughput, and 

universally applicable.

Predictive biomarkers

In recent years, it has become evident that patients with the t(4;14) have more favorable 

outcomes when they are treated with proteasome inhibitors. A group at the Mayo Clinic 

recently discussed the concept of “risk-adapted therapy” (5) whereby patients with high-risk 

disease (i.e., patients with the t(14;16), t(14;20), and/or del17p) may be better candidates for 

triplet combination therapy (e.g., bortezomib-lenalidomide-dexamethasone) compared to 

patients with intermediate- or standard-risk disease. Although triplet combinations may have 

a less favorable side effect profile relative to “single-agent” therapies, triplet combination 

regimens are more appropriate for patients with high-risk disease because median overall 

survival in that cohort is only 3 years compared to 4-5 years and 8-10 years for patients with 

intermediate-risk and standard-risk disease, respectively. In the absence of using cytogenetic 

markers to risk-stratify transplant-eligible and transplant-ineligible patients, it would be 

difficult to determine which treatment regimen is most appropriate for patients with multiple 

myeloma.

Nevertheless, the t(4;14) cannot be considered to be a true prognostic biomarker because 

many patients who lack this translocation also respond and have good clinical outcomes 

following proteasome inhibitor therapy. Moving forward, information from genome wide 

sequencing studies is leading to the identification of frequent pathogenetically important 

mutations in MM, including those involved in the ERK signal transduction pathway. These 

biomarkers include NRAS, KRAS, and BRAF (4). In recent years, BRAF-V600E has 

emerged as one of the most promising ERK mutations that can be targeted, validating the 

concept of targeted treatment. For example, one MM patient with extramedullary disease 

and the BRAF-V600E mutation responded well to low doses of vemurafenib, a mutation-

specific BRAF inhibitor (58), making it a true predictive biomarker in the absence of which 

a response was not observed.

One potential issue with use of targeted therapy is the presence of intraclonal heterogeneity 

(ICH) relating to subclonal variability. ICH is the essential substrate for clonal evolution 

according to the principles of Darwinian evolution (4). In recent years, three patterns of 

clonal evolution have been identified: relapse can be genetically stable; it can linearly evolve 

with several new genetic variants at relapse; or it can come from a clone that wasn't present 

at the time of diagnosis (59). Paired sample analysis of 28 MM patients revealed that 

patients with SR cytogenetics typically have PC clones that are genetically stable (59). In 

contrast, patients with HR cytogenetics have PC clones that undergo many more genetic 

modifications over time.

The presence of ICH has important implications for the development of biomarkers. 

Although it was once acceptable to determine whether a molecular target was present, it is 
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now essential to obtain an idea of the size of the sub-clone carrying the target. The size of 

the clone has important therapeutic implications for targeted treatment because completely 

eradicating a clone present only 5% of the time would have little importance clinically, 

whereas in a clone present 90% of the time, there would be a significant clinical response.

The presence of ICH also has an effect on the assessment and treatment of relapse. 

Traditionally, clinical data were used to define prognosis, response to therapy, duration of 

prior response, rate of relapse, the presence of extramedullary or blastic disease, 

performance status, and the toxicity of prior treatment. In the era of molecular medicine, 

cytogenetics, focal lesions, tidal clone status (i.e., same clone, new mutant, or prior clone), 

GEP signature, and methylation status are beginning to provide clinicians with more 

information about the clinical behavior of the disease at relapse.

Biomarkers in MGUS and smoldering multiple myeloma

In the 1970s, Kyle and Greipp began to use the phrases “monoclonal gammopathy of 

undetermined significance (MGUS)” and “smoldering multiple myeloma (SMM)” to 

describe premalignant PC disorders that are not associated with end organ damage or 

treatment (60, 61). Currently, asymptomatic MM is an active area of biomarker research 

where the challenge is to predict those patients who are at HR of disease progression for 

whom treatment intervention is essential to prevent the emergence of significant end organ 

damage. The use of many of the molecular markers described above is difficult because the 

molecular features of MM that require treatment are often present in patients with 

asymptomatic disease (62, 63), meaning that alternative approaches to predict risk status are 

required.

In 2003, the IMWG used laboratory and clinical markers (e.g., serum and urine M protein, 

clonal BMPCs, and sFLC) to define patients with asymptomatic MM where treatment was 

not indicated (64). The sFLC ratio is one of the most promising biomarkers in asymptomatic 

MM; it has been used as a prognostic indicator in patients with MGUS (65), SMM (66-68), 

and newly diagnosed MM (69), but it is not without controversy. The Spanish Programa 

Español de Tratamientos en Hematologίa (PETHEMA) and Mayo Clinic groups both used 

sFLC ratios, circulating PCs, and PC proliferation rates to create two models that classify 

asymptomatic patients as being at low-, intermediate-, or HR of disease progression (66, 70). 

A group at the NCI used the Spanish PETHEMA Model (70) and the Mayo Clinic Model 

(66) to categorize 77 patients with SMM as being at low-risk (LR), intermediate-risk, or HR 

of developing active MM (71). In the NCI's study, concordance between the PETHEMA and 

Mayo Clinic Models was low (28.6%); there was also significant discordance between how 

each model classified patients' risk status. Thus, although characterization of PC 

immunophenotype and measuring sFLC ratios both have prognostic potential, they lack 

specificity and do not have enough positive predictive value to be useful in determining 

when treatment should be initiated in patients with asymptomatic disease.
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Imaging tools for “early” myeloma

Given that nearly all patients with symptomatic MM develop osteolytic lesions, clinicians 

use BM aspirates and trephine samples to monitor bone morphology throughout the course 

of disease progression. Although these tools are useful, there can be variability in the 

distribution of BMPCs throughout the body, increasing the likelihood of heterogeneous 

sample recovery and sampling error, particularly in patients with asymptomatic disease. 

Given the importance of understanding the underlying biology of bone in MM, clinicians 

use x-rays to complete skeletal surveys, a technique that is currently the gold standard for 

evaluating severity of bone disease. Despite the utility of skeletal surveys, magnetic 

resonance imaging (MRI), computed tomography (CT), and positron emission tomography 

(PET)/CT scanning are becoming increasingly important tools for assessment of disease 

severity. MRI is a useful noninvasive technique for imaging the spine, soft tissue, and 

infiltration of BMPCs and is particularly useful for patients with SMM because it can detect 

diffuse lesions, the presence of which is an adverse prognostic factor for PFS (72). In 

addition, detection of seven or more focal lesions with MRI is considered to be an adverse 

prognostic factor in patients with MM (73). If MRI is unavailable, CT may be helpful for 

assessing the extent of damage to the spine or soft tissues. Nevertheless, its use should be 

limited because CT can expose patients to nearly three times more radiation than 

conventional MRI. Lastly, fusion of CT and fluorodeoxyglucose (FDG) PET images can be 

very useful for evaluation of patients with symptomatic disease and has the potential to be 

useful in patients with MGUS or SMM (74). In the future, functional imaging techniques 

that are used in combination with biomarker data are likely to contribute to the management 

of patients with “early” MM and the development of novel MRD assays.

Target Modulation

Cytotoxic chemotherapy, immunomodulatory agents, and proteasome inhibitors have been 

highly effective and universally applicable in MM. Going forward, the next generation of 

targeted treatments will depend not only on the presence of a target, but also on their ability 

to modulate their target. This will be especially important during the early phases of clinical 

development of targeted treatments, where target modulation should be considered to be an 

important endpoint. In MM, it is, perhaps, not optimal to use circulating lymphocytes as 

targets to assess target modulation because of differences in cellular biology and tissue 

penetration. Consequently, access to and characterization of BMPCs is important and can be 

achieved using immunohistochemistry on BM trephines or flow cytometry on aspirate 

samples. Examples include the assessment of antiapoptotic proteins to predict a patient's 

response to agents that target these pathways, the demonstration of down-regulation of 

pERK, or evidence of changes in histone methylation states following evaluation of MMSET 
inhibitors.

Summary and Future Directions

Over the past 40 years, biomarkers such as M-protein and serum β2M have contributed 

innumerable insights into our present understanding of MM. Today, many cytogenetic 

markers are beginning to provide information about the severity of disease; these markers 
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are also beginning to inform clinicians regarding which anti-MM treatment regimen is most 

appropriate for a particular patient. It is clear that rapid technological advances are changing 

the way biomarkers are perceived as well as their clinical relevance (Figure 1). In the near 

future, diagnostic tests based on massively parallel sequencing approaches will enable 

detection of recurrent molecular abnormalities as well as actionable mutations that are rarely 

observed but which could utilize treatments that are used in other disease settings. Massively 

parallel sequencing approaches will also enable clinicians to monitor disease longitudinally, 

which may provide opportunities for early intervention before clonal PC expansion and 

disease complexity render existing treatments ineffective. Finally, combining functional 

imaging techniques with assays that utilize biomarkers has the potential to change clinical 

practice in patients with “early” myeloma and patients with symptomatic disease.
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Figure 1. Technological advances in detecting biomarkers in multiple myeloma
FISH, fluorescence in situ hybridization; miRNA, micro RNA; TC, transporter 

classification.
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Table 1
Inherited Variation and Primary Genetic Events in Multiple Myeloma

Inherited Variation

Single-nucleotide polymorphisms (SNPs)

Chromosome Gene(s) Primary tool(s) Reference(s)

2p23.3 DTNB and DNMT3A

GWAS (34, 35)3p22.1 ULK4 and TRAK1

7p15.3 DNAH11 and CDCA7L

Primary Genetic Events

IGH@ translocations

Translocation Gene(s) Primary tool(s) Reference(s)

t(4;14) at 4p16.3 FGFR3 and MMSET

Karyotype analysis (cytogenetics), FISH, GEP, GWAS, RT-PCR 
or sequencing

(25)

t(6;14) at 6p21 CCND3 (21, 23)

t(11;14)(p21;q11) CCND1 (21, 23, 27)

t(14;16)(q32;q23) MAF (24)

t(14;20)(q32;q12) MAFB (17, 26)

Hyperdiploidy (chromosomal trisomy)

Chromosome(s) Gene(s) Primary tool(s) Reference(s)

3, 5, 7, 9, 11, 15, 19, and 21 GEP and FISH (41)
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Table 2
Secondary Genetic Events in Multiple Myeloma

Secondary Genetic Events

Secondary translocations

Chromosome(s) Gene(s) Tool(s) Reference(s)

t(8;14) MYC FISH (75)

Gains

Chromosome Gene(s) Tool(s) Reference(s)

1q CKS1B and ANP32E
GEP (41)

12p LTBR

17q Comparative genomic hybridization (CGH) (76)

Deletions

Chromosome Gene(s) Tool(s) Reference(s)

1p CDKN2C, FAF1 and FAM46C

GEP, GM and FISH

(41, 77)

6q (41)

8p TRAIL-R1 and TRAIL-R2 (41, 78)

11q BIRC2 and BIRC3 (79, 80)

13 RB1 and DIS3 (41)

14q TRAF3 (79, 80)

16q CYLD and WWOX (40, 41)

17p TP53 (41, 81)

Epigenetic events

Global hypomethylation (MGUS to MM) and gene-specific 
hypermethylation (MM to PC leukemia)

Genome-wide methylation arrays (49)
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Table 3
Partial List of Response Criteria from The European Group for Blood and Marrow 
Transplantation (EBMT) and the International Myeloma Working Group (IMWG)

Parameter EBMT Response Criteria (82) IMWG Uniform Response Criteriaa (54)

sCR

• Not defined Patient meets all of the following criteria:

• CR as defined

• Normal free light chain ratio

• Absence of clonal PCs by immunohistochemistry 
or 2- to 4-color flow cytometry

CR

Presence of all of the following:

• Absence of M-protein in serum 
and urine, measured by 
immunofixation, maintained for 
≥6 weeks

• <5% bone marrow plasma cells

– If absence of M-protein is 
sustained for 6 weeks, it is 
not necessary to repeat the 
bone marrow exam except 
in patients with 
nonsecretory MM

• No increase in size or number of 
lytic bone lesions

• Disappearance of soft tissue 
plasmacytomas

Patient meets all of the following criteria:

• Negative immunofixation of serum and urine

• Disappearance of any soft tissue plasmacytomas

• ≤5% PCs in bone marrow

Immunophenotypic CR

• Not defined Patient meets all of the following criteria:

• sCR as defined

• Absence of phenotypically aberrant PCs (clonal) in 
bone marrow with a minimum of 1 million total 
BM cells analyzed by multiparametric flow 
cytometry (with >4 colors)

Molecular CR

• Not defined Patient meets all of the following criteria:

• CR as defined

• Negative allele-specific oligonucleotide 
polymerase chain reaction (sensitivity 10-5)

VGPR

• Not defined Patient meets one of the following criteria:

• Serum and urine M-component detectable by 
immunofixation but not on electrophoresis

• ≥90% reduction in serum M-component plus urine 
M-component <100 mg/24 h

PR

Patient meets all of the following criteria:

• ≥50% reduction of serum M-
protein for ≥6 weeks

• Reduction in 24-hour urinary 
light chain excretion either by 
≥90% or to <200 mg for ≥6 
weeks

Patient meets all of the following criteria:

• ≥50% reduction of serum M-protein and reduction 
in 24 h urinary M-protein by ≥90% or to <200 
mg/24 h

• If serum and urine M-protein can't be measured, a 
≥50% decrease in the difference between involved 
and uninvolved FLC levels is required in place of 
the M-protein criteria
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Parameter EBMT Response Criteria (82) IMWG Uniform Response Criteriaa (54)

• Nonsecretory MM only: ≥50% 
reduction of plasma cells in BM 
aspirate for ≥6 weeks

• ≥50% reduction in the size of soft 
tissue plasmacytomas

• No increase in size or number of 
lytic bone lesions

• If serum and urine M-protein can't be measured, 
and serum free light assay also can't be measured, 
≥50% reduction in plasma cells is required in place 
of M-protein, provided baseline bone marrow 
plasma cell percentage was ≥30%

• In addition to the above listed criteria, if present at 
baseline, a ≥50% reduction in the size of soft tissue 
plasmacytomas is also required

a
CR, sCR, VGPR, and PR require 2 consecutive assessments to be made at any time before beginning any new therapy. If radiographic studies 

were performed, these categories also require no known evidence of progressive or new bone lesions.
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